

IBM Smart Analytics Optimizer for DB2 for z/OS

Willie Favero

Senior Certified Consulting IT Software Specialist Data Warehouse for System z Swat Team - DB2 SME

This presentation contains trade-marked IBM products and technologies. Refer to the following Web site:

http://www.ibm.com/legal/copytrade.shtml

Session 7800

IBM Smart Analytics Optimizer Overview and Beta Experiences

- Bill Schray
- Thursday, 3:00 PM
- Room 303

Copyright © 2010 IBM Corporation All rights reserved

The IBM Smart Analytics Optimizer

-The basics

Topics

- -Beta customer experience
- –Under the hood
- -Setting it up

Is it right for me?

Business Challenges and Technology Trends

Changing business requirements

- -BI/DW becoming mission critical and requires OLTP-like QoS
 - reliability, continuous availability, security, mixed workload management, ...
 - orders of magnitude faster execution of complex, ad hoc queries
 - predictable query performance
- -Shift towards dynamic DW and operational BI
 - Combining OLTP and OLAP workloads
- Traditional performance tuning tools of the trade such as indexing, prebuilt aggregates and MQTs struggling to keep the pace
 - Require top DBA expertise and sophisticated tools
 - Even then not good enough due to ad-hoc, unpredictable nature of the workload
- Technology trends
 - -Very large number of processor sockets and cores
 - -Massive amounts of real memory
 - Specialized physical data designs: row-store vs. column-store

Ultimate Consolidation Opportunity

- Consolidation of mission-critical data on System z
- Ability to leverage existing environment, high availability, backup and governance procedures as well as skills
- Efficient data movement within a data sharing group (no network)
- Performance and TCO improvements through cubing services (data marts) and DB2 enhancements
- Complex transformations and data quality driven from Linux on System z with Information Server

A system of systems that unifies IT for predictable service delivery

Unified management for a smarter system: **zEnterprise Unified Resource Manager**

- Part of the IBM System Director family, provides platform, hardware and workload management
- Unifies management of resources, extending IBM System z[®] qualities of service across the infrastructure

Scale out to a trillion instructions per second: IBM zEnterprise BladeCenter® Extension (zBX)

- Selected IBM POWER7[™] blades and IBM System x[®] Blades¹ for tens of thousands of AIX[®] and Linux applications
- High performance optimizers and appliances to accelerate time to insight and reduce cost
- Dedicated high performance private network

The world's fastest and most scalable system: IBM zEnterprise[™] 196 (z196)

- Ideal for large scale data and transaction serving and mission critical applications
- Most efficient platform for Large-scale Linux[®] consolidation
- Leveraging a large portfolio of z/OS[®] and Linux on System z applications
- Capable of massive scale up, over 50 Billion Instructions per Second (BIPS)

Accelerating Queries using the IBM Smart Analytics Optimizer for DB2 for z/OS Copyright © 2010 IBM Corporation All rights reserved

IBM Smart Analytics Optimizer – a Virtual DB2 Component

Characteristics of the IBM Smart Analytics Optimizer IBM

- A special purpose, network attached blades system
- No changes to the applications
 - Applications continue to attach to DB2
 - When applicable query needs to be executed DB2 exploits the accelerator transparently to the applications
 - Full fencing and protection of DB2 against possible accelerator failures
- Order of magnitude performance improvement
- Reducing need for tedious tuning of DB2 (MQTs, indexes, etc.)
- Appliance-like form-factor
 - Hands free operations
- Significantly improved price/performance and TCO as a combined effect of:
 - Offloading very CPU intensive operations
 - Orders of magnitude performance improvement for offloaded queries
 - Reduced DBA effort for tuning offloaded queries
- Hybrid technology
 - Enabling Dynamic DW and Operational BI
 - Preserving traditional DB2 quality of service
 - Having transactional and analytical workload being handled by DB2

Data View: Marts – Redundant Sets of Memory Resident Tables

- DB2 continues to *own* and manage all data
- Access performance is influenced by traditional tuning mechanisms such as indexing, MQTs, aggregates, ...
- Typical usage: Enterprise Data Warehouse, large Data Marts

- Smart Analytics Optimizer contains fully memory resident, compressed copies of performance critical tables grouped into logically connected *marts*, bound ideally by star schema constraints
- Similar but much broader than MQTs: no column projections, no row restrictions, no row aggregations
- Typical usage: Data Marts, MQTs consolidation and replacement

Accelerating Queries using the IBM Smart Analytics Optimizer for DB2 for z/OS Copyright © 2010 IBM Corporation All rights reserved

Smart Analytics Optimizer: Mart Definition and Deployment

- Smart Analytics Optimizer marts need to be defined and deployed to Smart Analytics Optimizer before data is loaded and queries sent to Smart Analytics Optimizer for processing.
 - Definition: identifying tables and relations that make up marts.
 - Deployment: making marts known to DB2, i.e. storing mart meta data in the DB2 and Smart Analytics Optimizer catalog.
- Smart Analytics Optimizer Studio guides you through the process of defining and deploying marts, as well as invoking other administrative tasks.
- Smart Analytics Optimizer Stored Procedures implement and execute various administrative operations such as mart deployment, load and update, and serve as the primary administrative interface to Smart Analytics Optimizer from the outside world including Smart Analytics Optimizer Studio.

Browse the Mart With Table Relations

Zoom In: Size Estimates and Fact table property

Smart Analytics Optimizer Mart Load

IBM

- A MART is a logical collection of tables which are related to each other. For example all tables of a single star schema would belong to the same MART.
- The administrator uses a rich client interface to define the tables which belong to a MART together with the information about their relationships.
- DB2 for z/OS creates definitions for these MARTs in the own catalog. The related data is read from the DB2 tables and transferred to the Smart Analytics Optimizer.
- The accelerator transforms the data into a highly compressed, scan optimized format which is kept locally (in memory) on the Accelerator.

- → Queries executed **without** Smart Analytics Optimizer
 - Queries executed with Smart Analytics Optimizer

IBM Smart Analytics Optimizer Overview

	DB2		Query parsing and matching. Is routing single query blocks to the optimizer. Remains the "owner" of all data.	
Coordinator Node	Coordinate	or		Orchestrating the distributed tasks like LOAD or QUERY execution. Communication peers to DB2
Worker Node	Worker Node	Worker Node	Worker Node	Have all the data in main memory (spread across all worker nodes). Do the compression and
Worker Node	Worker Node	Worker Node	Worker Node	query execution. Always work together on a distributed task.

IDUG study on DW update frequency

Figure 10: How frequently is the data in your data warehouse/data marts refreshed?

In 90% of cases DW is updated once a day or even less frequently

- Typical DW update operations:
 - LOAD RESUME and REPLACE
 - ADD and ROTATE PARTITION
 - SQL INSERT, UPDATE, DELETE
 - Delete complete partition or table
 - TRUNCATÉ TABLE
- Smart Analytics Optimizer will over time phase-in support for all the typical operations in this order
 - 1. Full table reload
 - 2. Updated partition reload
 - 3. Individual row change
- The marts update is initiated and controlled through Smart Analytics Optimizer Studio
- Queries off-loaded to Smart Analytics Optimizer before the marts are refreshed can return different result set as compared to not being off-loaded
 - In case this is not acceptable use SET CURRENT REFRESH AGE = 0

Additional DB2 Support - EXPLAIN

DSN_QUERYINFO_TABLE

- Whether or not a query block is eligible for automatic query rewrite, and if not eligible show the reason why it's not eligible.
- If eligible for automatic query rewrite, which materialized/accelerated query tables were considered, and for each one that wasn't chosen the reason why it was not chosen.
 - REASON_CODE why AQT matches and why not
 - QI_DATA part of SQL statement that causes failing match

III < Table > DSN	L_QUERYINFO_TABL	.E		
General	♦ X ☆ ⊕			
Columns	Name	Primary Key	Data Type	Length
Relationships	QUERYNO		INTEGER	
Documentation	QBLOCKNO		SMALLINT	
	QINAME1		VARCHAR	128
	QINAME2		VARCHAR	128
	APPLNAME		VARCHAR	24
	PROGNAME		VARCHAR	128
	VERSION		VARCHAR	122
	COLLID		VARCHAR	128
	GROUP_MEMBER		VARCHAR	24
	SECTNOI		INTEGER	
	SEQNO		INTEGER	
	EXPLAIN_TIME		TIMESTAMP	
	TYP <u>E</u>		CHAR	8
	REASON_CODE	\geq	SMALLINT	
			CLOB	2097152
	SERVICE_INFO		BLOB	2097152
	QB_INFO_ROWID		ROWID	

Stop Accel-Command "-STO ACCEL(IWA001)"

DSNX810I -D2PAA DSNX8CMD STOP ACCEL FOLLOWS -DSNX860I -D2PAA DSNX8STO STOP ACCELERATOR SUCCESSFUL FOR IWA01 DSN9022I -D2PAA DSNX8CMD '-STOP ACCEL' NORMAL COMPLETION

Start Accel-Command "-STA ACCEL(IWA001)"

DSNX810I -D2PAA DSNX8CMD START ACCEL FOLLOWS -DSNX820I -D2PAA DSNX8STA START ACCELERATOR SUCCESSFUL FOR IWA01 DSN9022I -D2PAA DSNX8CMD '-START ACCEL' NORMAL COMPLETION

Display Accel-Command "-DIS ACCEL(IWA001) DETAIL(*) LIST(*)"

DSNX810I -D2PAA DSNX8CMD DISPLAY ACCEL FOLLOWS -			
DSNX830I -D2PAA DSNX8CDA			
ACCELERATOR MEMB STATUS REQUE	STS	QUED M	AXQ FAIL
IWA01 DPAA STARTED	10	0	1 0
PORT=1400 IPNAME=00010601			
IPADDR=192.168.150.21 HEALTHY			
IPADDR=192.168.150.22 HEALTHY			
IPADDR=192.168.150.23 HEALTHY			
CUMULATIVE STATISTICS SINCE 14:36:13 OCT 7, 2009			
STATUS = FULLY OPERATIONAL			
AVERAGE QUEUE WAIT			4
MAXIMUM QUEUE WAIT			
PROCESSING CAPACITY		131427	8
TOTAL NUMBER OF PROCESSORS		2 2	4
AVERAGE CPU UTILIZATION ON COORDINATOR NODES			2
NUMBER OF ACTIVE COORDINATOR NODES			3
PHYSICAL MEMORY AVAILABLE ON COORDINATOR NODES		4523	5 M B
PHYSICAL MEMORY AVERAGE USAGE ON COORDINATOR NODES		303	9 M B
AVERAGE CPU UTILIZATION ON WORKER NODES			0
NUMBER OF ACTIVE WORKER NODES			
PHYSICAL MEMORY AVAILABLE ON WORKER NODES		4569	7 MB
PHYSICAL MEMORY AVERAGE USAGE ON WORKER NODES		257	7 MB
SHARED MEMORY DATA AVAILABLE ON WORKER NODES		316	0 MB
SHARED MEMORY DATA AVERAGE USAGE ON WORKER NODES		3304	7 MB
MAXIMUM SHARED MEMORY DATA IN USE ON WORKER NODES		3337	3 M B
DISPLAY ACCEL REPORT COMPLETE			
DSN9022I -D2PAA DSNX8CMD '-DISPLAY ACCEL' NORMAL CO	MPL	ETION	

Orderable Smart Analytics Optimizer Options

Smart Analytics	XS	S	М	L	XL
Optimizer Offerings	.5TB	1TB	2TB	3TB	4TB
Enterprise Rack	1	1	1	2	2
BC-H Chassis, incl. redundant infrastructure (AMM, PDU, TOR 10Gb Ethernet switch for data, TOR 1Gb Ethernet for management, 4Gb F/C switches)	1	1	2	3	4
Blades	7	14	28	42	56
DS5020 with # of SATA disks (1 TB)	16	16	16	32	32
Storage Expansion Units	0	0	0	1	1

- For z10, order Machine Type 2458 Model 001
- For zEnterprise 196, order Machine Type 2458 Model 002
- Model 001 is MES upgradable to Model 002, when z10 is upgraded to zEnterprise 196
- DSS5020 disk needs to be ordered separately from zBX, and housed in its own rack.

Testing Results

- The problem queries provided by a customer
- Expert database tuning done on all the queries
 - Q1 Q6 even after tuning run far too long and consume lots of resources
 - Q7 improved significantly no Smart Analytics Optimizer offload is needed
- The table shows elapsed and CPU times measured in DB2 (without Smart Analytics Optimizer)

	Times measured in DB2 without Smart Analytics Optimizer						
Query	Total Elapsed	CP	zIIP	Total CPU Time			
Q1	0:02:43	0:03:52	0:02:39	0:06:31			
Q2	0:38:31	0:11:52	0:36:10	0:48:02			
Q3	0:00:25	0:00:04	0:00:15	0:00:19			
Q4	0:26:33	0:13:43	0:20:50	0:34:33			
Q5	0:00:35	0:00:09	0:00:29	0:00:38			
Q6	1:30:35	5:53:30	1:29:56	7:23:26			
Q7	0:00:02	0:00:02	0:00:00	0:00:02			

Performance Improvement after Adding IBM Smart Analytics Optimizer

	Query Elapsed Time								
Query	DB2 only	DB2 with Smart Analytics Optimizer	Speed-up						
Q1	0:02:43.0	0:00:03.4	48						
Q2	0:38:31.0	0:00:04.5	511						
Q3	0:00:25.0	0:00:02.2	12						
Q4	0:26:33.0	0:00:07.8	206						
Q5	0:00:35.0	0:00:08.3	4						
Q6	1:30:35.0	0:00:03.8	1424						
Q7	0:00:02.0	0:00:02.0	1						
Total	2:39:24.0	0:00:32.0	298						

What Is Smart Analytics Optimzer Ideally Suited For?

Accelerating Queries using the IBM Smart Analytics Optimizer for DB2 for z/OS

Small dimension tables

- The Fact table is split into multiple parts and distributed evenly across the Worker nodes within the cluster.
 - Bigger Fact tables "just" require enough Worker nodes to contain the compressed data in memory.
- The Join Strategy between Dimension Tables and the Fact table data is always a collocated join.
 - This means that all dimension tables are fully replicated to each of the worker nodes.
 - Space requirements for dimension tables therefore needs to be multiplied with cluster size (amount of Worker Nodes)

- DB2 for z/OS reuses partial MQT functionality to find out which queries are eligible for Smart Analytics Optimizer offload and which are not.
- This implies that a subset of the MQT restrictions is inherited
 - Only a single query block at a time can be routed to the Optimizer (Queries which consist of several Query Blocks, are not seen as whole query by the accelerator but only as single, independent blocks)
 - The results of subqueries can not be used by the Optimizer in the outer query (DB2 would need to pass a subselect result to Smart Analytics Optimizer)

Derived table (nested table expression)

SELECT * FROM (SELECT C1+C2 FROM TA) TX

Derived table (common table expression=CTE)

WITH DTOTAL (deptno, totalpay) AS

(SELECT deptno, sum(salary+bonus)

FROM DSN8810.EMP GROUP BY deptno)

SELECT deptno FROM DTOTAL

WHERE totalpay = (SELECT max(totalpay) FROM DTOTAL);

IN predicate with subquery

SELECT ... FROM ... WHERE ..

AND ((A11.STORE_NUMBER IN

(SELECT C21.STORE_NUMBER

FROM USRT004.VL_CSG_STR C21

WHERE C21.CSG_NUMBER IN (4643)))

- A MART consists of a set of tables together with their referential constraints.
 - Fact tables are considered to be the tables which have the highest join depth.
- Only Queries, including at least the fact table, can be routed to Smart Analytics Optimizer (Queries which are only scanning the dimensions have to be handled by DB2)
- Multiple fact tables are allowed within the same MART definition but:
 Queries can not handle table across MART boundaries

- Because it uses static SQL
- Because it uses CURRENT REFRESH AGE = 0
- Because it contains syntax that is not supported (e.g. Subselect or full outer join)
- Because the accelerator or MART are disabled
- Because it references a table or column that is not in the accelerated mart (may be due to unsupported datatypes)
- Because the query does not reference a fact table
- Because the optimizer decides DB2 for zOS can do better (DB2 has a cost-based threshold)
 - -E.g. Query with selective predicate on indexed column is executed in DB2

First Release Restrictions

- Limited support for very large dimension tables
 - -Especially if the predicates on them are not selective
- No static SQL
- No full outer join, no right outer join
- Only equi-joins (no range join predicates)
- No queries that do not include at least one fact table
- No queries that spread across multiple marts
- Not all DB2 functions
 - -No mathematical functions such as SIN, COS, TAN.
 - -No user defined functins
 - -No advanced string functions such as LOCATE, LEFT, OVERLAY.
 - No advanced OLAP functions such as RANK, ROLLUP, CUBE
- Not all DB2 data types such as LOBs, ROWID, XML

Data Types Support

Not supported:

- Any kind of LOB
- ROWID
- XML
- Binary data

IBM

- DB2 9 for z/OS With maintenance
- z/OS 1.10 With maintenance
- USS pipe support for TEMPLATE utility PTF UK43948 for APAR PK70269
- XML Toolkit for z/OS V1.10.0, Program Number 5655-J51, FMID HXML190
- Data Studio V2.2 (IDE, no-charge download)
- IBM Smart Analytics Optimizer Studio
- System z BladeCenter Extension (zBX)
 - -Z10 w/zBX and z196 w/zBX
- OSA Express3 10 GbE connection
- PC Windows XP or higher, 5 GB free disk, 2 GB RAM

Stage	Purpose
Questionnaire	 Initial assessment based on size, query response time, update characteristics and customer pain points
Quick Workload Test	 Assessment based on dynamic customer workload, runtime statistics, table sizes and SQL.
Detailed Online Workload Analysis	 Assessment based on data mart definition for customer data model and offload capabilities in a real Smart Analytics Optimizer environment. Addresses all inhibitors for offload and data mart definition questions.

Quick Workload Test

- Customer
 - Collecting information from dynamic statement cache, supported by step-by-step instruction and REXX script (small effort for customer)
 - Uploading compressed file (up to some MB) to IBM FTP server
- IBM / Center of Excellence
 - Importing data into local database
 - Quick analysis based on known Smart Analytics Optimizer capabilities

Data package

(mainly unload

data sets)

Documentation

and REXX procedure

Customer

Database

Pre-process and

load

Dynamic Statement cache must be active

-Install panel

• CACHE DYNAMIC SQL field

or

-DSNZPARM

• DSN6SPRM CACHEDYN

Non-Data-Sharing

-START TRACE(MON) CLASS(1) IFCID(316,317,318) DEST(SMF)

Data-Sharing

-START TRACE(MON) CLASS(1) IFCID(316,317,318) DEST(SMF) SCOPE(GROUP)

Verify

-DIS TRACE(*)

• IFCID 316

- First 60 bytes of SQL statement plus identifying information and statistics
 - <u>http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.omegamon.xe_db2.doc/ko2rrd20228.htm</u>

• IFCID 317

-Used in addition to IFCID 316 to obtain the full SQL statement text

<u>http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.omegamon.xe_db2.doc/ko2rrd20228.htm</u>

• IFCID 318

- -Acts as a switch for IFCID 316 to collect all available information
 - Stop and Start for new interval

Create tables used by EXPLAIN

-Optimization Service Center (OSC)

or

-Optim Query Tuner (was Optimization Expert)

or

- DSNTIJOS job in SDSNSAMP

or

- A copy of DSNTIJOS is also included in the Assessment ZIP file

Execute

- -EXPLAIN STMTCACHE ALL
- -Can use SPUFI, DSNTEP2, or anything that allows this SQL statement to be executed
- Ensure SQLID (SCHEMA) is set correctly for the EXPLAIN tables
- Verify/validate correct information was gathered

- Provided REXX exec will EXPLAIN all SQL dumped from the statement cache using
 - -owner.PLAN_TABLE
 - -owner.DSN_STATEMNT_TABLE
 - -owner.DSN_FUNCTION_TABLE
 - -owner.DSN_PREDICAT_TABLE
 - -owner.DSN_STRUCT_TABLE
 - -owner.DSN_QUERY_TABLE
 - with CLOB column for statement text in XML format (V9)
 - -owner.DSN_DETCOST_TABLE

- Using supplied job, unload EXPLAIN tables and selected DB2 Catalog tables
 - Read documentation carefully and pay attention to warnings
- Prepare unloads using ADRDSSU and TRSMAIN
- FTP to testcase at boulder

IBM

- Customer may want to cleanup all of the tables/data sets used during this process.
 - Sample cleanup jobs are provided

IBM Smart Analytics Optimizer -- Workload Analysis Results

Center of Excellence, Datawarchouse on Systemiz, IBM Research & Development, Boblingen, Germany

Query Summary

Queries	2729	
Queries potentially accelerated	2713	99%
Query Blocks	2733	100%
Leaf Query blocks	2729	100%
with aggregations	13	0%
with UDFs	0	0%
with unsupported functions	1	0%
with unsupported join types	15	1%
Eligible leaf query blocks	2713	99%
Current elapsed time	8110.00	
Eligible leaf query blocks elapsed time	5796.66	71%
Current CPU time	1555.71	

Query blocks with acceleration potential Query blocks without acceleration potential

Elapsed time with acceleration potential Elapsed time without acceleration potential

Query	Elapsed Time	Executed	Blocks	Eligi	ble	Eligible Time	Table Sizes	Size Join Ind	Statement
149256	38.02	1	1	•	1	100.00%	118.50 MB		('imauth: I. SELECT M D' T1 T1-LL
138238	37.22	1	1	Ø	D	0.00%	12.93 GB		Princeth. 1 SELECI 1 Timester 1
87602	37.33	24	1	•	1	100.00%	287.25 MB		(Primarith SFLECT: STIFROM L. STIFROM THE VEHICLES CASE ID THE VEHICLE COMPANY ONDER SY
148204	36.77	1	1	•	1	100.00%	4.05 GB		(Primauth SELECT T T T T T T T T T T T T T T T T T T T
146105	33.67	2	1	Ð	D	0.00%	12.93 GB		Primauth: . SELECT T A R C C C C C C C C C C C C C
140675	33 32	2	1	•	1	100.00%	63.00 MB		(Prinauti SELECTION BY IT YOU IT C
149330	32.46	1	1	4	1	100 00%	677 11 MB		Prinauth: SELECT F F J ORDER BY T1. Way, Lo.
139154	29.40	1	1	•	1	100.00%	7.62 GB		(Prinzauth) SELECT

IBM Smart Analytics Optimizer -- Workload Analysis Results

Accelerating Queries using the IBM Smart Analytics Optimizer for DB2 for z/OS

Copyright © 2010 IBM Corporation All rights reserved

Summary of Value Proposition

- Seamless integration of new computing paradigms into proven technology
 - Massive multi-core and vector processing
 - In-memory database
 - No changes to the applications; applications continue to attach to DB2
 - When applicable query needs execution, DB2 transparently exploits Smart Analytics Optimizer
 - Preserving traditional System z and DB2 Quality of Service (QoS), full fencing and protection of DB2 against possible Smart Analytics Optimizer failures
 - Hands free operation
- Augmenting System z value proposition as the overall Enterprise Data Hub
 - System z hybrid topology enables additional transparency and management integration
- Order of magnitude performance improvement
 - Linear scaling with the number of CPUs
- Reducing need for tedious tuning of DB2 (MQTs, aggregates, indexes, etc.)
- Providing building block for Dynamic Data Warehousing and Operational BI

- Using IBM System z as the Foundation for Your Information Management Architecture, REDP-4606
 - Focuses on Smart Analytics Optimizer
 - http://www.redbooks.ibm.com/redpieces/abstracts/redp4606.html
- IBM zEnterprise BladeCenter Extension Model 001, REDP-4668
 - <u>http://www.redbooks.ibm.com/redpieces/abstracts/redp4668.html</u>
- 50 TB Data Warehouse Benchmark on IBM System z, SG24-7674
 - <u>http://www.redbooks.ibm.com/abstracts/sg247674.html</u>
- Housing Transactional & Data Warehouse Workloads on System z, - SG24-7726-00
 - <u>http://www.redbooks.ibm.com/redpieces/abstracts/sg247726.html</u>
- Enterprise Data Warehousing with DB2 9 for z/OS, SG24-7637
 - <u>http://www.redbooks.ibm.com/abstracts/sg247637.html</u>
- Workload Management for DB2 Data Warehouse, REDP-3927
 - http:// www.redbooks.ibm.com/abstracts/redp3927.html

धन्यवाद ขอบคณ Hindi Thai **Traditional Chinese** Gracias Спасибо Duccion Spanish Thank You Merci Obrigado French Brazilian Portuguese Arabic Danke **Bedankt** German Nederlands Simplified Chinese 감사합니다 ありがとうございました நன்றி Tamil Japanese